If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying (5z + 2w)(25z2 + -10zw + 4w2) = 0 Reorder the terms: (2w + 5z)(25z2 + -10zw + 4w2) = 0 Reorder the terms: (2w + 5z)(-10wz + 4w2 + 25z2) = 0 Multiply (2w + 5z) * (-10wz + 4w2 + 25z2) (2w * (-10wz + 4w2 + 25z2) + 5z * (-10wz + 4w2 + 25z2)) = 0 ((-10wz * 2w + 4w2 * 2w + 25z2 * 2w) + 5z * (-10wz + 4w2 + 25z2)) = 0 Reorder the terms: ((50wz2 + -20w2z + 8w3) + 5z * (-10wz + 4w2 + 25z2)) = 0 ((50wz2 + -20w2z + 8w3) + 5z * (-10wz + 4w2 + 25z2)) = 0 (50wz2 + -20w2z + 8w3 + (-10wz * 5z + 4w2 * 5z + 25z2 * 5z)) = 0 (50wz2 + -20w2z + 8w3 + (-50wz2 + 20w2z + 125z3)) = 0 Reorder the terms: (50wz2 + -50wz2 + -20w2z + 20w2z + 8w3 + 125z3) = 0 Combine like terms: 50wz2 + -50wz2 = 0 (0 + -20w2z + 20w2z + 8w3 + 125z3) = 0 (-20w2z + 20w2z + 8w3 + 125z3) = 0 Combine like terms: -20w2z + 20w2z = 0 (0 + 8w3 + 125z3) = 0 (8w3 + 125z3) = 0 Solving 8w3 + 125z3 = 0 Solving for variable 'w'. Move all terms containing w to the left, all other terms to the right. Add '-125z3' to each side of the equation. 8w3 + 125z3 + -125z3 = 0 + -125z3 Combine like terms: 125z3 + -125z3 = 0 8w3 + 0 = 0 + -125z3 8w3 = 0 + -125z3 Remove the zero: 8w3 = -125z3 Divide each side by '8'. w3 = -15.625z3 Simplifying w3 = -15.625z3 Combine like terms: -15.625z3 + 15.625z3 = 0.000 w3 + 15.625z3 = 0.000 The solution to this equation could not be determined.
| -10(s+4)=-123 | | 4(2x-7)=8(x+3) | | 12x-12=6x-6 | | 32+7x=-2(4-x) | | 3x+6=6+7x | | 63+57+43+x=55 | | Y=-1(-1)+1 | | -4(x+2)-12=13+3 | | 9x=4x+100 | | Y=-1(0)+1 | | 7(x+4)=1-3x+29 | | 15y+11x=11 | | 4x*3w= | | 4x+22x=91 | | Tg(x)=4 | | V=vO+at | | Y=-1(1)+1 | | Hex-2y=3z | | 7x+3+4x+1+65=180 | | 2x-9+4x+9=90 | | (3x-2)(9x+6x+4)= | | Y=-1(2)+1 | | f(g)=2x+1 | | 7(x+9)=4(x-8) | | 3,2x+2(x-1,5)=0,6x-1,8 | | AD=B+C | | 2(t+1)=-4 | | -2y+9=42 | | 92-(6x-10)= | | 2y+9=42 | | 4(2h-1)=-2(3x+16) | | (z-4)(z^2+4z+16)= |